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For a linear operator S: F --+ G, where F is a Banach space and G is a Hilbert
space, we pose and solve the problem of approximating elements g = Sf, f E F,
based on noisy values of n linear functionals at f The noise is assumed to be
Gaussian with correlation matrix D = diag {<1f, ..., <1;}. The a priori measure )1 on F
is also Gaussian. We show how to choose the functionals from a ball to minimize
the expected error of approximation. The error of the optimal approximation is
given in terms of n, a ;s, and the eigenvalues of the correlation operator of the a
priori distribution v = )1S~ 1 on G. ( 1993 Academic Press, Inc

I, INTRODUCTION

In the paper we consider the following approximation problem, Let S be
a linear and continuous operator acting from a Banach space F to a
Hilbert space G, both separable and over the real field, We wish to
approximate elements Sf, for f E F, based on noisy data about f More
specifically, an information operator (or information) N: F -+ rw is given by

(1.1 )

where the L,'s are linear and continuous functionals, L i E F*, I ~ i ~ n. For
a (unknown) f E F we observe a random vector z = [z I' "', z,,] E IR", which
has n-dimensional normal distribution with mean Nf and correlation
matrix D=diag{af, ai, ... , a;'}, We assume that all a;'s are known, The
vector a = [a I' .", 0' II] will be called a precision vector, An approximation
to Sf is constructed based on z, i.e" Sf -I,b(z), where I,b: IR" -+ G is some
transformation. The error of approximation is defined as the root of the
expected squared norm of the error with the expectation taken over all f as
well as z, i.e"

e(l,b, N,O')= Lt II Sf -1,b(z)11 2 n(dzlf) J1.(df),
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where n:( ·If) is Gaussian on IR" with mean Nf and correlation matrix D,
and II is an a priori distribution on F. In this paper we assume that II is
the zero mean Gaussian measure with positive definite and symmetric
correlation operator CJl: F* -+ F.

For an information operator N and precision vector a, let

r(N, a) = inf e(rjJ, N, a).
¢

It is well known that the infimum in r(N, a) is achieved for rjJ*(z) = Sm(z),
where m(z) is the mean of the conditional (a posteriori) measure on F, after
z has been observed. For given nand a= (ai' ..., a,,), we want to minimize
r( N, a) over a class of information operators N. More precisely, our aim is
to find

r(a) = inf r(N, a),
N

(1.3)

where the infimum is taken with respect to all N = [L I' ..., L,,] with the L/s
bounded in the J!-norm by IIL;III' = JL;( C"L;) ~ I, I ~ i ~ n. We also want
to know optimal information N*, for which r(a) is achieved, if it exists.

The above and related optimal design problems have been studied from
different viewpoints in approximation theory, statistics, numerical analysis,
and information-based complexity. In most cases, however, the authors
assume exact information, see, e.g., Micchelli and Wahba [3], Novak [5],
Papageorgiou and Wasilkowski [6J, Ritter [8], Traub et at. [9], and
Wozniakowski [II]. Although in practice, as a rule, observations use noisy
information (for instance the function values are always contaminated by
observational or round-off errors), optimal design results in this direction
are very limited.

Estimation of functions from noisy data is a topic of many statistical
works, see, e.g., Wahba [10] and references cited there. Some special
results may be found in Traub [9] et at. Along with random noise, deter­
ministic noise is studied. One of the first results on this subject was given
by Micchelli and Rivlin [4]. From recent papers we mention Kacewicz and
Plaskota [I ].

In the present paper we generalize results of Plaskota [7] where the case
D = a 2I (I-identity matrix) is considered.

We now briefly outline the contents of this paper. In Section 2 we give
two auxiliary lemmas. The main result is placed in Section 3, where
solution of the optimal design problem is provided via solution of another,
much simpler, minimization problem. In Section 4 we show how to
construct optimal information, and give an explicit formula for its error.
The error is given in terms of n, the a /s, and the eigenvalues of the correla-
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tion operator of the a priori measure v = IlS 1 on G. We also note that
adaptive choice of information functionals does not reduce the minimal
error of approximation.

2. AUXILIARY LEMMAS

In this section we give two lemmas which will be used in the main result.
For L), L 2 E F*, let

(2.1 )

Then the adjoint space F* with the inner product (2.1) is a pre-Hilbert
space (which is, however, not always complete). For information N =
[L), ... , LnJ, we denote by M N the Gram matrix M N = {<L h L) I' };: I~ (.

Proceeding as in Plaskota [7J for the case D = (12J we can now show the
following

LEMMA 2.1. The conditional distrihution on F with respect to the
observed vector Z E IRn is Gaussian with mean

m(z) = I Yi(CpL;l,
i= 1

where y = [y l' ... , Yn J E IR" is the solution of the linear system
(D + M N·) Y = z. Jts correlation operator CI,.N.,,: F* -> F is independent of z
and

VLEF*.

Remark. Although we do not use it later, it is worthwhile to mention
that the mean m( z) is a smoothing spline. Optimality properties of splines
are well known, see, e.g., Traub et al. [9J for the exact information case or
Wahba [IOJ for approximation in a reproducing kernel Hilbert space. In
our case we have that m(z) is the minimizer in Cp(F*) 'of

(with the convention 0/0=0), and F(m(z)) = <Y,Z)2' Here I/fl/;'=
(Cp If)(f) and Y is as in Lemma 2.1. A proof of this fact can be obtained
by straightforward calculation with the use of Lemma 2.1.

The second lemma is as follows
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LEMMA 2.2. Let the nonincreasing sequences fl, ~ fl 2 ~ ..• ~ flll ~ 0 and
111 ~112~ ... ~11,,~O he such that

;= r ;= r

1~r~n,

II

L w;, = fl;,
\'= I

and
II

L W,;W.lj =11; 8,,\
.\"= J

for all 1~ i, j ~ n (8 It stands for the Kronecker delta).

Proof We construct the matrix W using induction on n. For n = 1 we
have 11'11 =;;J:. Let 11 ~ 2. Ifl/ j = fli' 1~ i~ n, then W= diag{;;J:, ..., ;;7:}.
Otherwise there is an index s, 1~ s ~ n - 1, that 1/, > p, ~ 11., + I' Set
ij = '1,. + 11, + I - fl,. > 0, and let V E IRIII II X III I) be the required matrix for
the sequences fl I ~ ... ~ fl, _I ~ fl., + I ~ .,. ~ flll and 11 I ~ .. , ~ 11 \ I ~ ij ~
11,.+2~ ... ~I/". Let ujEIR" I be the columns of V, l~i~n-1. Then
straightforward calculation gives that the desired matrix is W = {H'I' ..., w lI },

WjE IR", 1~ i ~ n, where

for i -:j:. s, s + 1,

H's+ 1= (hu;, d)T

(the superscript T denotes transposition), and

3. MAIN RESULT

In this section we present the main result about the optimal design.
We assume without loss of generality that

(if all the a;'s are nonzero then no = 0).
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Let v = !J.S~ 1 be the a priori distribution on the space G, induced by the
measure !J. and the operator S. Then v is a zero mean Gaussian with
correlation operator

c. = SC!,S*: G --+ G,

where S*: G --+ F* is the adjoint operator to S, S*g = <S( . ), g), Vg E G.
Moreover, C" is self-adjoint, nonnegative definite, and has finite trace. Let
{ ~; } ?~ml G C G be the complete and orthonormal system of eigenelements
of the operator C•. Let )'1 ~ )'2 ~ ;'J ~ ... ~ 0 be the corresponding eigen­
values, C\~;=;.;~;. We consider the sequence p.;} to be infinite by setting,
if necessary, ).; = 0 for i> dim G. Define, for A; > 0, the functionals

(3.1 )

(for A;=O we formally set K;*=O). Recall that the functionals (3.1) are
IJ.-orthonormal, i.e., <K;*, K/) I' = b;;- Moreover, they form optimal infor­
mation in the exact information case, a = 0, and r(O) = L,:": n + I ;'j (see
Traub et al. [9]). From this it immediately follows that in the case
)'no+I=O we have r(a)=O and the optimal information is [Kr,· ..,K~o'O,
0, ...,0]. To avoid these two obvious cases we will assume that (J ¥ 0 (i.e.,
no < n), and that Ano + 1 > O.

It turns out that the following minimization problem plays a crucial role
in the optimal design:

PROBLEM (MP). Minimize

over all nonnegative '1 no + I, ..., '1 n satisfying

no + 1~ r ~ n,

Note that for the solution '1* of (MP) we have '1~0+ I~ '1~0+2 ~ ... ~ '1/~'

which is easy to see. We are now ready to state the main theorem on the
optimal design.

THEOREM 3.1. Let,.,* = ("'~o+ I' ... , ""~) he the solution of (MP). Then
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Furthermore, the optimal information is

N* = [K 1*, ... , K,~), L~, ..., L~ n,J,
lvhere

" Ito

L,*=IO"no+,1 I w,~K:a+j'
i~ I

and w* = {w;'j };:j~n1 is the matrix from Lemma 2.2 applied for

and
I

{3'=-2-'
(j no + i

Before providing a proof we make a comment on how to construct
optimal functionals (which are in span {K 1*' ..•, Kn*}). To do this, we first
have to solve (MP) and then find the matrix W*. Solution of (MP) is
given in the next section, see Theorem 4.1. The matrix W* may be found
by following the construction from the proof of Lemma 2.2.

Proof of the Theorem. We first provide a proof in the case when all O"/s
are nonzero, no = O. We do it in three steps.

Step 1. We derive a convenenient formula for r(N, 0"). For an infor­
mation operator N = [L I , ••• , L n ], define the matrix

M -D 1/2M D- 1/2 - {I I-I(L L> }n
N,,, - N - 0" ,O"j " j Ii " i ~ I .

It is symmetric and nonnegative definite. Let MN."u, = '1,U j , (u" U)2 = bu'
I ~ i, j ~ n, and 'II ~ ... ~ '1 n ~ O. Let

K,=(D 1/2N(.),U'>2= I IO",I-IU"L"
s=1

1~ i ~ n. These functionals are II-orthogonal and

(K" K)1i = K,(CliKi ) = I 10",1- 1 u"L,(CliKi )
s=]

n

= L 100sO",1-1 u"ujl(Ls , L'>I<
S,1 = I

(3.2)



APPROXIMATION WITH NOISY DATA

From (3.2) and Lemma 2.1 we have

n

m(D 1i2u) = L ((D+MN)-I D 1
/
2U,),CIl L,

i= 1

n

= I (D- 1
/
2(l + M N ,,,) 1 U)i C"L,

i= I

= (I + rr) 1 I 10';1 1 u/jC1,L j = (1 + '7j) . I C"Kj.
i= J

Furthermore, for any L E F*

n n

D- 1i2N(C"L) = I <D 1i2N(C"L), Uj >2 U, = I (L, K)"uj •

j= 1 .1= I

Since, in addition, the mean m(z) is linear with respect to z, we get

n n

m(N(CIlL)) = I (L, K,>m(D L 2u)= L (l +rr) I(L, K j >" C1,Kj •

j=1 j=1

99

Hence, the correlation operator CI,.N,,,: F* --+ F of the conditional measure
(see Lemma 2.1 ) can be rewritten as

VL E F*. (3.4)

Using (3.4) and the well known fact that (r(N,0'))2=trace(C •. N ,/T)' where
C,N,/T = SCI"N,,,S*: G --+ G is the correlation operator of the a posteriori
measure on G, we obtain that

VgEG,

and the desired formula for r( N, 0') is

dim G

i= I
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Step 2. Observe that the operator S* can be treated as adjoint to
SCI-': F* -> G, with respect to the Ii-inner product in F*. Hence, for any
Ii-orthonormal functionals 1(, 1 ~ i ~ n, we have

11 "

I IIS(C1,KJ )11 2
= L <S*SC"Kj , K)"

j~ J j= J

n n

~ L <SCI,S*~I' ~J) = L )'1'
j= J j= I

Moreover, from (3.3) and '1 J ?: ... ?: '1/l ?: 0 it follows that

From this and (3.5) we obtain

'x'

=Q('1I,.··,'1/l)+ L AI'
j= n + 1

In addition, for all I ~ r ~ n we have

n 11 "

I '1; ~ I <MN."e;, e;)2 =I u 2
I=r i=r I=r I

(where e; stands for the ith versor), and L7~ 1'1; = L7~ J U,~2. Thus

(3.6 )

Step 3. We now show that r(N*, u) is equal to the right side of the
inequality (3.6). Indeed, the matrix MNo.u=(W*)(W*)T, the (orthogonal)
columns wt of W* are the eigenvectors of MNo. u, and M No. ul1·t='1twt,
1~ i ~ n. Furthermore, according to (3.2), the corresponding functionals K;
are

fJ n n

K;= L 10',,1- 1
w~L,,*= I 100,r l

w~lusl L w.~KI*
.'1'= 1 s= J t= I

n

=" <w* w*) K*='1*K*~ I' 1 2, I l'

1= 1
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(4.1 a)

From this, the formula (3.5), and from the fact that IISCI,KrI12=;."j~1,
it follows that

r(N*,(J)=J± A+ I A"
i = I + '1, , ~,/+ I

which completes the third step and the proof of the case no = O.
Suppose now that no~ 1. Then N= [No, N 1] and (J=((JIOI, (JIll), where

IVo=[LI, ...,L"o]' NI=[L"o+I, ...,L,,], and (JIO)=(O"I, ... ,a"o)' a ll )=
(a "0 + I' ... , a,,). The a posteriori Gaussian measure on F with respect to
information No (which is obtained exactly, 0"1

0
1= 0) has the correlation

operator C". No = C,,(I- P No )' where P tvo : F* - F* is the Il-orthogonal
projection onto span {L), ... , L"o}' For the dominating eigenvalues ;~i of
SCI,.NoS*, which is the correlation operator of the a posteriori measure
on G with respect to No, we have Xi ~ ..1"0+ i' Vi ~ 1. Moreover, if
No=NJ'=[KI*, ...,K::;J then J.'=)."o+" and the corresponding
eigenelements are ~i = ~"O + i. Vi ~ 1. Hence, we obtain the desired result by
reducing our problem to that of finding optimal N" where the precision is
0"11 I and the a priori distribution on F is Gaussian with correlation
operator CI,(I - P N ; ). I

4. EXPLICIT FORMULAS FOR '1 * AND r( a)

In this section we provide an explicit formula for the solution
'1 * = ('7:0 + 1 .... , '1:) of the minimization problem (M P) as wen as for the
optimal error r( 0").

For no ~ q < r ~ n, define the fonowing auxiliary minimization problem

PROBLEM (P(q, r)). Minimize

over all nonnegative '1 q + I' ... , '1 r satisfying

L '1,= L
i~q+) i~q+ I

The solution '7 + = ('7q\ I' ... , '7 r+ ) of (P(q, r)) is as fonows. Let k = k(q, r) be
the largest integer satisfying q + 1~ k ~ rand

"k )1/2
L-j=q+ I ., ./ '1/2
r- 2 :::::: A. k •

L,~q+ I a, + (k-q)
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for q + I ~ i ~ k, (4.lb)

and I] t = 0, for k + 1~ i ~ r. Furthermore,

("k A1/2)2 r
Q ( +) =L..J = q + 1 J " ' .

qr I] "r 2 k + 1... AI'
L..j~q+lai +( -q) l~k+1

We say that the solution I] + of Problem (P(q, r) is acceptahle itT

(4.1c)

r r 1
L 1]/ ~I a2'

J= 5 l=.~ J

for all q + I ~ s ~ r. (4.2)

(4.4b)

Let the number p, 0 ~ p < n, and the sequence 0 ~ no < n I < '" <
np < np + 1= n be defined (uniquely) by the condition

n j = min {s ~ no: solution of (P(s, n j + Il) is acceptable}, (4.3)

for all 0 ~ i ~ p.
Using the formulas (4.1 a )-(4.1 b) and the condition (4.3) we can

construct the solution of the original minimization problem (MP). Indeed,
this follows from the following

THEOREM 4.1. Let p and the sequence no < n 1< .. , < np + 1= n be
defined by (4.3). Then the optimal 1]* is

where 1]1i) = (I]~i+ I' ..., I]~<t ,) is the solution of (P(n j , n j + d), 0 ~ i ~ p.

Proof Let t=max{no+l~i~n:l]i*>O}. For no+l~i~t, the
function

IS continuous, convex, and attains the minimum at To such that
Aj 1(1 +1]1-1 +1]/* -To)-2=A j (1 +To)-2. From this and from the
definition of (MP) it easily follows that

)'j I )'j

(1-1]1 Il 2 ~ (I + 1],*)2' (4.4a)

M 'f' (I * )-2 1(1 *)-2 th "n * "n -2oreover,1 Ai - 1 +I]i-I <lLj +I]i en L..j=i'1j =L..j=ja .

If t < n then, using the same argument with i = t + 1, we find that

)., .
(1 + I],*f ~ ).,+ I'
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Let m I < ... < m, be the sequence of all indices i, no < i < t, for which
;'j(1 + 'In 2< Aj+ ,(1 + 'I~+ d 2. Set mo=no and m.. +1=11. From (4.4a) it
follows that L;~'J~,+I '1t=L;~';,,+1 aj 2, O:S;i:S;s. This and (4.4b) yield
that the numbers '1~"+I""''1~,,,, are the solution of (P(mj,m j+ I )), for all
o:S; i:S; s. The complete the proof, it is now enough to show that the

{ I.' + 1 d { 1 P + 1 th . { }q + 1 t' fi (4 3 )sequences mjfj~o an nifj~o are e same, I.e., m j i~O sa IS les ..
Indeed, suppose to the contrary that for some i there is io, O:S; io < m j , such
that the solution '1/:+ I' ..., '1:',+1 of P(Jo, m j+ 1)) is acceptable. Then

m , ~ 1 nlj. I In, f I

L 'I/:S;. I a2 - L '1,*.
j = nt, + 1 1= m l + 1 ) i = m, + 1

From this and the formulas (4.la)-(4.lb) we get that 11/ :S;11/, for all
m j+ I ~i:S;mj+I' Similarly, for io:S;i~mj we have

. ; . .
)~/ '1111 +J ~ Ami + J _ )"'j

(1 *)2«1 * )2""(1 + )2-(1 +)2'+ '1 j + 11 nI, + 1 + 11 nI, -+- 1 + '1 j

and consequently '1/ < 'It Hence,

m/ + I m, + I nil + 1

L (J2 - L '1/ < I '1/'
/=/0+11 ;=/0+1 /=/0+1

which is a contradiction. I
Knowing optimal '1* we can write an explicit formula for r(a). Observe

that for i < P the number k = k(n, I' n,), defined by (4.1a), is equal to n j •

From this, Theorem 4.1, and from the formula (4.1 c) we obtain

COROLLARY 4.1. Let p and {n j } f~+(/ be defined by (4.3), and let
k = k(n p , n) be given by (4.la). Then

r(a) =

As we see, the formula for the optimal error r(a), given in terms of the
eigenvalues ;'( and precisions ai' I:s; i:S; n, is rather complicated. Let, for
simplicity, all a,'s be nonzero. Then we have the following bounds on r(a):
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where k is the largest integer satisfying I ,,::; k ,,::; nand

'Lk },1/2
I~ I / ~) 1/2

L;'~ 1 (J/-2 + k '" 'k .

Observe that the lower bound in (4.5) depends on the A./s and the sum
'L7~ 1 (Jj- 2. It is achieved if (J belongs to the region

I ,,::; s"::; n, (4.6 )

where 17** = (17r*, ..., 17,~*) is the solution (4.lb) of the problem (P(O, n)).
For instance, (4.6) always holds for (J 1 = ... = (J n (this case is known from
Plaskota [7]). On the other hand, the upper bound in (4.5) is achieved if
for all 0,,::; q < r"::; n the solution ~ + of (P(q, r» satisfies

r r 1
I: 17/ ~ I: 2'

i=.\' j= .\' (Ij

q + 1"::; s"::; r.

This always holds, for instance, for }'I = ... = An' In such cases the optimal
information is N* = [Kt, ... , K,~]. Note also that if there are equalities in
(4.6) for all s then both bounds in (4.5) are the same.

In this paper we have considered only nonadaptive information
operators. It turns out that the minimal error of approximation coming
from the use of n adaptive information functionals with precision
(J = ((J I' ... , (J n) is not less than r( (J). This may be shown in a standard way;
see Kadane et at. [2] and Plaskota [7].
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